Verschieben von Funktionsgraphen: Unterschied zwischen den Versionen
(6 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 12: | Zeile 12: | ||
|- | |- | ||
| valign="top" | | | valign="top" | | ||
− | <br /> Im nebenstehenden Applet siehst du den Funktionsgraphen f der Funktion f(x)=x<sup>3</sup>. Den roten Graphen g der Funktion g(x) kannst du durch Verschieben | + | <br /> Im nebenstehenden Applet siehst du den Funktionsgraphen f der Funktion f(x)=x<sup>3</sup>. Den roten Graphen g der Funktion g(x) kannst du durch Verschieben |
des Reglers verändern. Versuche herauszufinden, wie sich das Verändern des Parameters auf den Graphen von g auswirkt. <br /> <br /> | des Reglers verändern. Versuche herauszufinden, wie sich das Verändern des Parameters auf den Graphen von g auswirkt. <br /> <br /> | ||
| | | | ||
Zeile 21: | Zeile 21: | ||
'''<span style="color: blue">Erklärung:</span>''' <br /> | '''<span style="color: blue">Erklärung:</span>''' <br /> | ||
Der Graph f gehört zu dem Funktionsterm f(x)=x<sup>3</sup>. Der rote Graph g liegt jeweils so viele Einheiten über bzw. unter dem Graphen f, wie der Regler anzeigt. <br /> | Der Graph f gehört zu dem Funktionsterm f(x)=x<sup>3</sup>. Der rote Graph g liegt jeweils so viele Einheiten über bzw. unter dem Graphen f, wie der Regler anzeigt. <br /> | ||
− | Man kann also sagen, dass der Graph g a Einheiten über dem Graphen f liegt. Das bedeutet, dass jeder Funktionswert g(x) an der Stelle x 3 Einheiten größer ist, als | + | Man kann also sagen, dass der Graph g a Einheiten über dem Graphen f liegt. Das bedeutet bespielsweise für a=3, dass jeder Funktionswert g(x) an der Stelle x 3 Einheiten größer ist, als |
− | der Funktionswert f(x). Folglich nehmen beide Graphen den gleichen Verlauf, allerdings <span style="color: blue">um a Einheiten nach oben (in positiver y-Richtung) bzw. | + | der Funktionswert f(x). Folglich nehmen beide Graphen den gleichen Verlauf, allerdings <span style="color: blue">um a Einheiten nach oben (in positiver y-Richtung) bzw. |
nach unten (in negativer y-Richtung) verschoben</span>. <br /> | nach unten (in negativer y-Richtung) verschoben</span>. <br /> | ||
:Für den Funktionsterm g(x) gilt somit: <span style="color: blue">g(x)=f(x)</span><span style="color: red">+a</span>. <br /> <br /> | :Für den Funktionsterm g(x) gilt somit: <span style="color: blue">g(x)=f(x)</span><span style="color: red">+a</span>. <br /> <br /> | ||
<div style="margin:0px; margin-right:90px; border: solid blue; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">'''<span style="color: blue">Beispiel:</span>''' f(x)=x<sup>3</sup> <br /> | <div style="margin:0px; margin-right:90px; border: solid blue; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">'''<span style="color: blue">Beispiel:</span>''' f(x)=x<sup>3</sup> <br /> | ||
− | :::<span style="color: green">f( | + | :::<span style="color: green">f(1)=1</span> <br /> |
− | Verschiebung um <span style="color: red">3 Einheiten nach oben</span> | + | Verschiebung um <span style="color: red">3 Einheiten nach oben</span> → g(x)=f(x)+3 <br /> |
− | ::: g( | + | ::: g(1)=<span style="color: green">f(1)</span><span style="color: red">+3</span> <br /> |
− | ::: g( | + | ::: g(1)=<span style="color: green">1</span><span style="color: red">+3</span> <br /> |
− | ::: g( | + | ::: g(1)=4 </div> <br /> <br /> |
Zeile 53: | Zeile 53: | ||
<div style="margin:0px; margin-right:90px; border: solid blue; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">'''<span style="color: blue">Beispiel:</span>''' f(x)=x<sup>3</sup>+2x<sup>2</sup> <br /> | <div style="margin:0px; margin-right:90px; border: solid blue; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">'''<span style="color: blue">Beispiel:</span>''' f(x)=x<sup>3</sup>+2x<sup>2</sup> <br /> | ||
− | :::x=1 | + | :::x=1 → f(1)=3 <br /> <br /> |
Verschiebung um <span style="color: red">3 Einheiten nach rechts</span>: <br /> | Verschiebung um <span style="color: red">3 Einheiten nach rechts</span>: <br /> | ||
:::g(x)=f(x<span style="color: red">-3</span>) <br /> | :::g(x)=f(x<span style="color: red">-3</span>) <br /> | ||
Zeile 63: | Zeile 63: | ||
<div style="margin:0px; margin-right:90px; border: solid red; padding: 1em 1em 1em 1em; background-color:yellow; width:90%; align:center; ">'''<span style="color: red">Merke:</span>''' <br /> | <div style="margin:0px; margin-right:90px; border: solid red; padding: 1em 1em 1em 1em; background-color:yellow; width:90%; align:center; ">'''<span style="color: red">Merke:</span>''' <br /> | ||
− | Bei zwei gegebenen Funktionen f und g, für die gilt: '''g(x)=f(x'''<span style="color: red">-b</span>''')''' entsteht der Graph j durch eine Verschiebung um <span style="color: red">b</span> Einheiten in x-Richtung. Für ein positives b erfolgt die Verschiebung in positiver x-Richtung (nach rechts), für ein negatives b in negativer x-Richtung (nach links).</div> | + | Bei zwei gegebenen Funktionen f und g, für die gilt: '''g(x)=f(x'''<span style="color: red">-b</span>''')''' entsteht der Graph j durch eine Verschiebung um <span style="color: red">b</span> Einheiten in x-Richtung. Für ein positives b erfolgt die Verschiebung in positiver x-Richtung (nach rechts), für ein negatives b in negativer x-Richtung (nach links). </div> |
+ | <br /> <br /> | ||
== <span style="color: blue">3.Beispielaufagben</span> == | == <span style="color: blue">3.Beispielaufagben</span> == | ||
− | ''' <span style="color: blue">Aufgabe 1:</span>''' <br /> Gegeben ist die Funktion f(x)=x<sup>3</sup>+5x-5. Bestimme den Funktionsterm h(x) für den Graphen h, der ausgehend vom Graphen f 5 Einheiten nach unten und 2 nach rechts verschoben ist. | + | <div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 1:</span>''' <br /> Gegeben ist die Funktion f(x)=x<sup>3</sup>+5x-5. Bestimme den Funktionsterm h(x) für den Graphen h, der ausgehend vom Graphen f 5 Einheiten nach unten und 2 nach rechts verschoben ist. |
Zeile 78: | Zeile 79: | ||
::=x<sup>3</sup>-4x<sup>2</sup>+4x-2x²+8x-8+5x-20 <br /> | ::=x<sup>3</sup>-4x<sup>2</sup>+4x-2x²+8x-8+5x-20 <br /> | ||
::='''x<sup>3</sup>-6x<sup>2</sup>+17x-28''' | ::='''x<sup>3</sup>-6x<sup>2</sup>+17x-28''' | ||
− | </popup> | + | </popup> </div> |
− | ''' <span style="color: blue">Aufgabe 2:</span>''' <br /> Bestimme die Funktionsterme der Graphen, die durch Verschiebung aus dem Graphen f(x)=x<sup>3</sup> hervorgegangen sind. | + | <div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 2:</span>''' <br /> Bestimme die Funktionsterme der Graphen, die durch Verschiebung aus dem Graphen f(x)=x<sup>3</sup> hervorgegangen sind. |
Ausgangsfunktion: <br /> | Ausgangsfunktion: <br /> | ||
[[Bild:Aufgabe 1.2 Verschiebungen 1.png|400px]] <br /> <br /> | [[Bild:Aufgabe 1.2 Verschiebungen 1.png|400px]] <br /> <br /> | ||
− | a) [[Bild:Aufgabe 1.2 Verschiebungen 2.png|400px]] <br /> | + | a) [[Bild:Aufgabe 1.2 Verschiebungen 2.png|400px]] <br /> <br /> |
− | b) [[Bild:Aufgabe 1.2 Verschiebungen 3.png|400px]] <br /> | + | |
+ | b) [[Bild:Aufgabe 1.2 Verschiebungen 3.png|400px]] <br /> <br /> | ||
+ | |||
c) [[Bild:Aufgabe 1.2 Verschiebungen 4.png|400px]] <br /> <br /> | c) [[Bild:Aufgabe 1.2 Verschiebungen 4.png|400px]] <br /> <br /> | ||
Zeile 108: | Zeile 111: | ||
:::j(x)=x<sup>3</sup>-6x<sup>2</sup>+9x-3x<sup>2</sup>+18x-27-4 <br /> | :::j(x)=x<sup>3</sup>-6x<sup>2</sup>+9x-3x<sup>2</sup>+18x-27-4 <br /> | ||
:::'''j(x)=x<sup>3</sup>-9x<sup>2</sup>+27x-31''' | :::'''j(x)=x<sup>3</sup>-9x<sup>2</sup>+27x-31''' | ||
− | </popup> <br /> <br /> | + | </popup> </div> <br /> <br /> |
− | ''' <span style="color: blue">Aufgabe 3:</span>''' <br /> | + | <div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 3:</span>''' <br /> |
Kreuze an, was stimmt. Es können mehrere Antwortmöglichkeiten richtig sein. <br /> <br /> | Kreuze an, was stimmt. Es können mehrere Antwortmöglichkeiten richtig sein. <br /> <br /> | ||
<quiz display="simple"> | <quiz display="simple"> | ||
Zeile 143: | Zeile 146: | ||
- nach unten | - nach unten | ||
− | </quiz> | + | </quiz> </div> |
− | |} | + | |} <br /> |
[[Facharbeit Florian Wilk/Strecken und Spiegeln von Funktionsgraphen|Weiter zum Kapitel Strecken und Spiegeln von Funktionsgraphen]] | [[Facharbeit Florian Wilk/Strecken und Spiegeln von Funktionsgraphen|Weiter zum Kapitel Strecken und Spiegeln von Funktionsgraphen]] |
Aktuelle Version vom 27. Januar 2010, 15:59 Uhr
Verschieben von Funktionsgraphen1.Verschiebung nach oben/untenProblemstellung:
Erklärung:
Beispiel: f(x)=x3
Verschiebung um 3 Einheiten nach oben → g(x)=f(x)+3
Merke: Bei zwei gegebenen Funktionen f und g, für die gilt: g(x)=f(x)+a entsteht der Graph g durch eine Verschiebung des Graphen f um a Einheiten in y-Richtung. 2.Verschiebung nach rechts/linksProblemstellung:
Beispiel: f(x)=x3+2x2
Verschiebung um 3 Einheiten nach rechts:
Man kann also erkennen, dass der Funktionswert von f(x) an der Stelle 1 gleich dem Funktionswert von g(x) an der Stelle 4, also 3 Einheiten rechts von f(x), ist.
Merke:
Bei zwei gegebenen Funktionen f und g, für die gilt: g(x)=f(x-b) entsteht der Graph j durch eine Verschiebung um b Einheiten in x-Richtung. Für ein positives b erfolgt die Verschiebung in positiver x-Richtung (nach rechts), für ein negatives b in negativer x-Richtung (nach links).
3.Beispielaufagben Aufgabe 1:
Gegeben ist die Funktion f(x)=x3+5x-5. Bestimme den Funktionsterm h(x) für den Graphen h, der ausgehend vom Graphen f 5 Einheiten nach unten und 2 nach rechts verschoben ist.
Aufgabe 2: Bestimme die Funktionsterme der Graphen, die durch Verschiebung aus dem Graphen f(x)=x3 hervorgegangen sind.
Aufgabe 3:
Kreuze an, was stimmt. Es können mehrere Antwortmöglichkeiten richtig sein. |
Weiter zum Kapitel Strecken und Spiegeln von Funktionsgraphen