Abi 2012 Geometrie I Teil B: Unterschied zwischen den Versionen
Zeile 63: | Zeile 63: | ||
'''BILD FEHLT''' | '''BILD FEHLT''' | ||
Abbildung 2 zeigt ein quaderförmiges Möbelstück, das 40 cm hoch ist. Es steht mit seiner Rückseite flächenbündig an der Wand unter dem Fenster. Seine vordere Kante liegt im Modell auf der Geraden | Abbildung 2 zeigt ein quaderförmiges Möbelstück, das 40 cm hoch ist. Es steht mit seiner Rückseite flächenbündig an der Wand unter dem Fenster. Seine vordere Kante liegt im Modell auf der Geraden | ||
− | <math> k: \vec X = \begin{pmatrix} 0 \\ 5,5 \\0,4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\0 \end{pmatrix} | + | <math> k: \vec X = \begin{pmatrix} 0 \\ 5,5 \\ 0,4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\0 \end{pmatrix} ; \lambda </math>∈ IR. |
− | + | f) Ermitteln Sie mithilfe von Abbildung 2 die Breite b des Möbelstücks möglichst genau. | |
− | + | Bestimmen Sie mithilfe der Gleichung der Geraden k die Tiefe t des Möbelstücks und erläutern Sie Ihr Vorgehen. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= | ||
Zeile 86: | Zeile 72: | ||
}} | }} | ||
− | + | g) Überprüfen Sie rechnerisch, ob das Fenster bei seiner Drehung am Möbelstück anstoßen kann. | |
:{{Lösung versteckt|1= | :{{Lösung versteckt|1= |
Version vom 20. Juli 2017, 21:05 Uhr
|
Abbildung 1 zeigt modellhaft ein Dachzimmer in der Form eines geraden Prismas. Der Boden und zwei der Seitenwände liegen in den Koordinatenebenen. Das Rechteck ABCD liegt in einer Ebene E und stellt den geneigten Teil der Deckenfläche dar. a) Bestimmen Sie eine Gleichung der Ebene E in Normalenorm. b) Berechnen Sie den Abstand des Punkts R von der Ebene E. Im Koordinatensystem entspricht eine Längeneinheit 1 m, d. h. das Zimmer ist an seiner höchsten Stelle 3 m hoch. Das Rechteck GHKL mit G(2/4/2) hat die Breite . Es liegt in der Ebene E, die Punkte H und K liegen auf der Geraden CD. Das Rechteck stellt im Modell ein Dachflächenfenster dar; die Breite des Fensterrahmens soll vernachlässigt werden. c) Geben Sie die Koordinaten der Punkte L, H und K an und bestimmen Sie den Flächeninhalt des Fensters. d) Durch das Fenster einfallendes Sonnenlicht wird im Zimmer durch parallele Geraden mit dem Richtungsvektor repräsentiert. Eine dieser Geraden verläuft durch den Punkt G und schneidet die Seitenwand OPQR im Punkt S. Berechnen Sie die Koordinaten von S sowie die Größe des Winkels, den diese Gerade mit der Seitenwand OPQR einschließt. e) Das Fenster ist drehbar um eine Achse, die im Modell durch die Mittelpunkte der Strecken [GH] und [LK] verläuft. Die Unterkante des Fensters schwenkt dabei in das Zimmer; das Drehgelenk erlaubt eine zum Boden senkrechte Stellung der Fensterfläche. BILD FEHLT Abbildung 2 zeigt ein quaderförmiges Möbelstück, das 40 cm hoch ist. Es steht mit seiner Rückseite flächenbündig an der Wand unter dem Fenster. Seine vordere Kante liegt im Modell auf der Geraden ∈ IR. f) Ermitteln Sie mithilfe von Abbildung 2 die Breite b des Möbelstücks möglichst genau. Bestimmen Sie mithilfe der Gleichung der Geraden k die Tiefe t des Möbelstücks und erläutern Sie Ihr Vorgehen. g) Überprüfen Sie rechnerisch, ob das Fenster bei seiner Drehung am Möbelstück anstoßen kann.
|