Abi 2013 Analysis II Teil A: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
Zeile 62: Zeile 62:
 
a) Veranschaulichen Sie durch eine Skizze, dass die Graphen von g und h genau einen Schnittpunkt haben. <br>
 
a) Veranschaulichen Sie durch eine Skizze, dass die Graphen von g und h genau einen Schnittpunkt haben. <br>
 
b) Bestimmen Sie einen Näherungswert x<sub>1</sub> für die x-Koordinate dieses Schnittpunkts, indem Sie für die in IR definierte Funktion
 
b) Bestimmen Sie einen Näherungswert x<sub>1</sub> für die x-Koordinate dieses Schnittpunkts, indem Sie für die in IR definierte Funktion
<math> d: x \mapsto g(x)-h(x)</math> den ersten Schritt des Newton-Verfahren mit dem Startwert x=1 durchführen.
+
<math> d:x \mapsto g(x) - h(x) </math> den ersten Schritt des Newton-Verfahren mit dem Startwert x<sub>0</sub>=1 durchführen.
  
 
:{{Lösung versteckt|1=
 
:{{Lösung versteckt|1=

Version vom 20. Juli 2017, 16:48 Uhr


Mathematik (Bayern): Abiturprüfung 2013
Analysis II - Teil A


Download der Originalaufgaben - Lösung zum Ausdrucken


Aufgabe 1

Geben Sie für die Funktion f mit f(x)=ln(2013-x)  den maximalen Definitionsbereich, das Verhalten von f an den Grenzen von D sowie die Schnittpunkte des Graphen von f mit den Koordinatenachsen an.



Aufgabe 2

Der Graph der in IR definierten Funktion f:x \mapsto x \cdot sinx verläuft durch den Koordinatenursprung. Berechnen Sie f(0) und geben Sie das Krümmungsverhalten des Graphen von f in unmittelbarer Nähe des Koordinatenursprungs an.


Aufgabe 3

Gegeben sind die in IR definierten Funktionen  g:x  \mapsto  e^{-x} und  h: x \mapsto x^3
a) Veranschaulichen Sie durch eine Skizze, dass die Graphen von g und h genau einen Schnittpunkt haben.
b) Bestimmen Sie einen Näherungswert x1 für die x-Koordinate dieses Schnittpunkts, indem Sie für die in IR definierte Funktion Fehler beim Parsen(Lexikalischer Fehler): d:x \mapsto g(x) - h(x)  den ersten Schritt des Newton-Verfahren mit dem Startwert x0=1 durchführen.


Aufgabe 4