Graph zeichnen: Unterschied zwischen den Versionen
Aus RMG-Wiki
(3 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 5: | Zeile 5: | ||
<tr><td width="800px" valign="top"> | <tr><td width="800px" valign="top"> | ||
− | == | + | == y = a sin b(x - c) + d: Zeichne den Graphen == |
Bewege die '''Punkte S ("Start"), P ("Periode") und B ("Berg")''' mit der Maus und '''zeichne so die Graphen der folgenden Funktionen'''!<br> | Bewege die '''Punkte S ("Start"), P ("Periode") und B ("Berg")''' mit der Maus und '''zeichne so die Graphen der folgenden Funktionen'''!<br> | ||
Du kanst Dein Ergebnis kontrollieren, wenn Du Dir den entsprechenden Graph anzeigen lässt.<br> | Du kanst Dein Ergebnis kontrollieren, wenn Du Dir den entsprechenden Graph anzeigen lässt.<br> | ||
Zeile 27: | Zeile 27: | ||
| Periodenlänge {{versteckt|1= <math>p = \frac{2\pi}{b} = \frac{2\pi}{0,5} = 4\pi</math>}} | | Periodenlänge {{versteckt|1= <math>p = \frac{2\pi}{b} = \frac{2\pi}{0,5} = 4\pi</math>}} | ||
|} | |} | ||
− | |||
+ | ;Bearbeite anschließend Aufgabe 3 auf dem Arbeitsblatt "Übungen zur allgemeinen Sinusfunktion"! | ||
<ggb_applet width="750" height="436" version="4.2" ggbBase64="UEsDBBQACAgIADmXaUUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIADmXaUUAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVpbb9s4Fn7u/ApCD4tkGju86NrYHSQz6O4AaRtMuovuIi+URMusZcmR5MQp+rD/cP/SHJKSLNuJx4mbbdDYFMVDnvt3SLqDXxbTFN2IopR5NrRIH1tIZFEeyywZWvNq1POtX97+NEhEnoiw4GiUF1NeDS27T63lPOj1Xawmy3hoMRKLkAZ2LwhGTs+O4rDHBQt6LLD9KMae7WDbQmhRyjdZ/oFPRTnjkbiMxmLKz/OIV3rNcVXN3hwf397e9hvu/bxIjpMk7C/K2EIgeVYOrfrhDSy3MumWaXKKMTn+/P7cLN+TWVnxLBIWUlrN5dufXg1uZRbnt+hWxtUYbMBc10JjIZMx6Ol4zELHimoGys5EVMkbUcLcTlcrXU1nlibjmRp/ZZ5Q2upjoVjeyFgUQwv3KWMO9R0HO4TatkMslBdSZFVNS2qex81qgxspbs2y6klztHHggQ9kKcNUDK0RT0tQS2ajAkwKAhVz6JbVXSpCXjT9pTzkCP4Bgfwq1FrgO2MHGMH4SH08+ICIRpYuYwtVeZ7qVTFyAvTtG6KYYnSkGmIaCo3rmiFs3mFmGmoa2zSOobHNdNuQ2obGNjQ226Jn3V8qWr9Y0bTRk3b1xEf4CBQ/0sqv6eh3dCRKgW+IKMl1w5CSmWjZVWPXXdd0Pd0QbBpSD/rqS9vK3VMb1mjD7vOa+4BGpMPVxMLDTDdipeFImLOjAeleSrIHHUYfUm9Pq7YadhV0IAHUn/5ssGSP0vFhm+7O0bX3SfgnMPTw/4Ph4LiBt0GddKgcK9o6TisxLRXUsECjDSLIgYx0PQAHB5EAGk9lJkXEQbYDXeIjV7UeYioZbcSQjxQdYUhjiuPDl60T1UUOrKVeeiZjEbORwxDRSGQjwB+k0QyQjTKgcBzkwCTFnSi2zEW2Cx3mIxsEVDjmKbxgMA/6wJwiRhBTc4mHqItcijyFhcRWEOn6SnZYlCIXI1dNBTAEIDQgCDN8xJQ2EOGzvJStcccinbVe0XaU2WxerdgumsbNY5WvUcd5NDlrbV2PCF5WXTKoQctKZ2rSSiF8NUh5KFLYL1yqQEDohqcqfzWHUZ5VqAkCat4lBZ+NZVReiqqCWSX6wm/4Oa/E4h1Qlw1vzVoX6IGYR6mMJc/+BVGillALomW9VtHV1Gsb+4ZNlOdFfHlXQuygxX9EkSsJvL7j2R6jfuDBR+XvnRmi2O+7FDMWOJ6PHS9wIHYjrqLepn2HEOYBG9fxCQ1gUjNkw5AXEJjn4oAEtm14i5tWOb4QZeOApJBx9/n38ixP49bYs1xm1a98Vs0LvfsCDCyUUqdZkgptXI2qsI+JJmG+uKwB2az16W4GPWz4h8mveZoXCHKSOqBJUrehaTWNEqylwpoGawrcuEnG7TgJqKbQbWhaTQV+N6LVipJGS4obNrLUSAKLd+NSB43aFM0zWZ03nUpGk1pTYug/zKchxFsbw0DwmzRbOLVddTzsBS6jrgd7ywA2bqtMybMw7VgI9nRl9Vnt6BzKnMD3PAe+aeD7lh76tx4yz5/GouL3kupYX4vywUQUmUhNKGcQTPN8XprkahPk1WBeigtejU+z+A+RAC5ccAXNFQhvSLUCJtlFJKcw0byv3cdVaP0TjGHexiIpRE3PU73lNs7Vo7ibWBuv9VLvinz6e3bzCeJ2TdTBcaPPoIwKOVPZgUKoFROxzACwEodKE3fngfIlaBEp1ANPVMpNFuLzapwXelMNyDG0AvQhvxHKawDXxLYUaixmhSjV+cT4HQ2tBOBtASCYHCwO0RDqxc+ATdkBRcdQIH5GBwvUQ6xPbOIE1HWYAzARMDV4eAgjypFKIpGKKWzVUaVTbjTPtGxtdCX6GKDCCOXhF8DJtehbugRUizWa66D7WBNPzSDM3UjiJkERT2djHUq18VN+B5p33aGZfRyNSlGhhVoBUAtqb2fwfR6venAkFyJeD5tlglcA2hM4jZTmAKCVhyzXT/+QcSx0UTKhbCy0YSuNcK0hLnc2VNcWXajSdnm0LXpKajBGj5Bt5uAZ5IvxTiVmioFCh5kQBleMRvAwA4YarztpqXOkVMz0ofiubr920EPbQmH4SsE0b9eSq2vQKJ9OeRajTO/AzsE71rLwc6ysijgZWotTwMDaevOqGZRmuXqRDf8oZ7fml5vuaXbNu/pn90jdsP6mBUltwd5yrftikzauuS80oTRfZ2ZKaRBfTmepjGS13c4XOnBXDS03rHux3bqr0X/xpOgn1CCBbp+eAcQ3GWA/fwK4fRpg13M814W9E9Z7ru+XDusgDzWsxvi7g8tDs4Fd9UI2n4pCRtaSXl+v8HTe8GhE2iWqNwFvQ6CoFmixo0DRcwsU1gKp8qeqHRS4g8XBhSpxSsadhAw3hQwCn2EaUEpx4NrM/a4yn9YyHygJ0WvUyL5eqUP42EfozuixknebSq0m5OnT8E4dyRPThKbZH/LUvpbZruuCLR2GnWesIB8L2EglecbTe2rJqaklm0iXPqKOpC+kjvTIRiles/ILKCrphqnPHlNUzn5gUTFR2mPPX1LuTQ/ybBWFtxXlTGHkroWFr0Mk+c44fl3LdW1OM7w+zYTNSSY6VEgZ3yfrxqHl+i8Cp+OHlYMJtrvbcbwH+m0/aPzlOWPDOpVYVKS20N+u53l18psAFlcn7+bZROn+Bl2dwN/VyZ16GF6dGCowGYdP3bk6AZOizljYjh0srk56VycH7dBBpI6KUJQOW5r//ffw8OrkdZcqbgcPTXOff5Tw1qom+x0q82cDWFme80/i8/q5Ud/8lZAQo+VVOOTi+zpRzZUgthrEbPAhLPN0XonLqBAia34LRCrpmfqRDPKcmUuebc6Hk/6o9vzI5AYgRnvWr7MD61cbewidM2SXc/5oT5c8WPOaq7qnnPPtoN7YBz/2pB/meSr40lhiHQw7gLLPDcBTbETqSKKBt3XnUN+zIm2tFX/ymfampv67us5GN9DVscazr0ImInuceaYv0DyMbI2hR5sn2WqezRQe1yk8NimM2xS2l9d1r5sDDNV5S3fJ2/GeefvlOe6kqFvvnujLytsvLzEw7a33do8OzPEjA3NSB+bEBGaPtpFpYlTHZedwXdeU3W6PJ3tGZ/YMdmcmNn/w5fF6aGYvMTTdrcefR4fm5OklJX9B5mE0+I6Z22zgyyQVMhrPswR9nU8R7O4TAcfKNK1EhowNHzLdcfdXJf1Dc/0/zN7+CVBLBwgigdh5bQkAABEnAABQSwECFAAUAAgICAA5l2lF1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIADmXaUUigdh5bQkAABEnAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAABAoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | <ggb_applet width="750" height="436" version="4.2" ggbBase64="UEsDBBQACAgIADmXaUUAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIADmXaUUAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVpbb9s4Fn7u/ApCD4tkGju86NrYHSQz6O4AaRtMuovuIi+URMusZcmR5MQp+rD/cP/SHJKSLNuJx4mbbdDYFMVDnvt3SLqDXxbTFN2IopR5NrRIH1tIZFEeyywZWvNq1POtX97+NEhEnoiw4GiUF1NeDS27T63lPOj1Xawmy3hoMRKLkAZ2LwhGTs+O4rDHBQt6LLD9KMae7WDbQmhRyjdZ/oFPRTnjkbiMxmLKz/OIV3rNcVXN3hwf397e9hvu/bxIjpMk7C/K2EIgeVYOrfrhDSy3MumWaXKKMTn+/P7cLN+TWVnxLBIWUlrN5dufXg1uZRbnt+hWxtUYbMBc10JjIZMx6Ol4zELHimoGys5EVMkbUcLcTlcrXU1nlibjmRp/ZZ5Q2upjoVjeyFgUQwv3KWMO9R0HO4TatkMslBdSZFVNS2qex81qgxspbs2y6klztHHggQ9kKcNUDK0RT0tQS2ajAkwKAhVz6JbVXSpCXjT9pTzkCP4Bgfwq1FrgO2MHGMH4SH08+ICIRpYuYwtVeZ7qVTFyAvTtG6KYYnSkGmIaCo3rmiFs3mFmGmoa2zSOobHNdNuQ2obGNjQ226Jn3V8qWr9Y0bTRk3b1xEf4CBQ/0sqv6eh3dCRKgW+IKMl1w5CSmWjZVWPXXdd0Pd0QbBpSD/rqS9vK3VMb1mjD7vOa+4BGpMPVxMLDTDdipeFImLOjAeleSrIHHUYfUm9Pq7YadhV0IAHUn/5ssGSP0vFhm+7O0bX3SfgnMPTw/4Ph4LiBt0GddKgcK9o6TisxLRXUsECjDSLIgYx0PQAHB5EAGk9lJkXEQbYDXeIjV7UeYioZbcSQjxQdYUhjiuPDl60T1UUOrKVeeiZjEbORwxDRSGQjwB+k0QyQjTKgcBzkwCTFnSi2zEW2Cx3mIxsEVDjmKbxgMA/6wJwiRhBTc4mHqItcijyFhcRWEOn6SnZYlCIXI1dNBTAEIDQgCDN8xJQ2EOGzvJStcccinbVe0XaU2WxerdgumsbNY5WvUcd5NDlrbV2PCF5WXTKoQctKZ2rSSiF8NUh5KFLYL1yqQEDohqcqfzWHUZ5VqAkCat4lBZ+NZVReiqqCWSX6wm/4Oa/E4h1Qlw1vzVoX6IGYR6mMJc/+BVGillALomW9VtHV1Gsb+4ZNlOdFfHlXQuygxX9EkSsJvL7j2R6jfuDBR+XvnRmi2O+7FDMWOJ6PHS9wIHYjrqLepn2HEOYBG9fxCQ1gUjNkw5AXEJjn4oAEtm14i5tWOb4QZeOApJBx9/n38ixP49bYs1xm1a98Vs0LvfsCDCyUUqdZkgptXI2qsI+JJmG+uKwB2az16W4GPWz4h8mveZoXCHKSOqBJUrehaTWNEqylwpoGawrcuEnG7TgJqKbQbWhaTQV+N6LVipJGS4obNrLUSAKLd+NSB43aFM0zWZ03nUpGk1pTYug/zKchxFsbw0DwmzRbOLVddTzsBS6jrgd7ywA2bqtMybMw7VgI9nRl9Vnt6BzKnMD3PAe+aeD7lh76tx4yz5/GouL3kupYX4vywUQUmUhNKGcQTPN8XprkahPk1WBeigtejU+z+A+RAC5ccAXNFQhvSLUCJtlFJKcw0byv3cdVaP0TjGHexiIpRE3PU73lNs7Vo7ibWBuv9VLvinz6e3bzCeJ2TdTBcaPPoIwKOVPZgUKoFROxzACwEodKE3fngfIlaBEp1ANPVMpNFuLzapwXelMNyDG0AvQhvxHKawDXxLYUaixmhSjV+cT4HQ2tBOBtASCYHCwO0RDqxc+ATdkBRcdQIH5GBwvUQ6xPbOIE1HWYAzARMDV4eAgjypFKIpGKKWzVUaVTbjTPtGxtdCX6GKDCCOXhF8DJtehbugRUizWa66D7WBNPzSDM3UjiJkERT2djHUq18VN+B5p33aGZfRyNSlGhhVoBUAtqb2fwfR6venAkFyJeD5tlglcA2hM4jZTmAKCVhyzXT/+QcSx0UTKhbCy0YSuNcK0hLnc2VNcWXajSdnm0LXpKajBGj5Bt5uAZ5IvxTiVmioFCh5kQBleMRvAwA4YarztpqXOkVMz0ofiubr920EPbQmH4SsE0b9eSq2vQKJ9OeRajTO/AzsE71rLwc6ysijgZWotTwMDaevOqGZRmuXqRDf8oZ7fml5vuaXbNu/pn90jdsP6mBUltwd5yrftikzauuS80oTRfZ2ZKaRBfTmepjGS13c4XOnBXDS03rHux3bqr0X/xpOgn1CCBbp+eAcQ3GWA/fwK4fRpg13M814W9E9Z7ru+XDusgDzWsxvi7g8tDs4Fd9UI2n4pCRtaSXl+v8HTe8GhE2iWqNwFvQ6CoFmixo0DRcwsU1gKp8qeqHRS4g8XBhSpxSsadhAw3hQwCn2EaUEpx4NrM/a4yn9YyHygJ0WvUyL5eqUP42EfozuixknebSq0m5OnT8E4dyRPThKbZH/LUvpbZruuCLR2GnWesIB8L2EglecbTe2rJqaklm0iXPqKOpC+kjvTIRiles/ILKCrphqnPHlNUzn5gUTFR2mPPX1LuTQ/ybBWFtxXlTGHkroWFr0Mk+c44fl3LdW1OM7w+zYTNSSY6VEgZ3yfrxqHl+i8Cp+OHlYMJtrvbcbwH+m0/aPzlOWPDOpVYVKS20N+u53l18psAFlcn7+bZROn+Bl2dwN/VyZ16GF6dGCowGYdP3bk6AZOizljYjh0srk56VycH7dBBpI6KUJQOW5r//ffw8OrkdZcqbgcPTXOff5Tw1qom+x0q82cDWFme80/i8/q5Ud/8lZAQo+VVOOTi+zpRzZUgthrEbPAhLPN0XonLqBAia34LRCrpmfqRDPKcmUuebc6Hk/6o9vzI5AYgRnvWr7MD61cbewidM2SXc/5oT5c8WPOaq7qnnPPtoN7YBz/2pB/meSr40lhiHQw7gLLPDcBTbETqSKKBt3XnUN+zIm2tFX/ymfampv67us5GN9DVscazr0ImInuceaYv0DyMbI2hR5sn2WqezRQe1yk8NimM2xS2l9d1r5sDDNV5S3fJ2/GeefvlOe6kqFvvnujLytsvLzEw7a33do8OzPEjA3NSB+bEBGaPtpFpYlTHZedwXdeU3W6PJ3tGZ/YMdmcmNn/w5fF6aGYvMTTdrcefR4fm5OklJX9B5mE0+I6Z22zgyyQVMhrPswR9nU8R7O4TAcfKNK1EhowNHzLdcfdXJf1Dc/0/zN7+CVBLBwgigdh5bQkAABEnAABQSwECFAAUAAgICAA5l2lF1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIADmXaUUigdh5bQkAABEnAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAABAoAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> |
Aktuelle Version vom 10. November 2014, 20:44 Uhr
y = a sin b(x - c) + d: Zeichne den GraphenBewege die Punkte S ("Start"), P ("Periode") und B ("Berg") mit der Maus und zeichne so die Graphen der folgenden Funktionen!
|