10e 2013 14: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
(Neue Klassenseite 10e für Mathematik)
 
Zeile 1: Zeile 1:
<h1>Das Kugelvolumen</h1>
+
<h1>Mathematik</h1>
 +
 
 +
<h2>Das Kugelvolumen</h2>
 
Vergleichen Sie das Halbkugelvolumen mit Zylindervolumen und Kegelvolumen (jeweils Höhe gleich Grundflächenradius).
 
Vergleichen Sie das Halbkugelvolumen mit Zylindervolumen und Kegelvolumen (jeweils Höhe gleich Grundflächenradius).
  
<ggb_applet width="855" height="472"  version="4.0" ggbBase64="UEsDBBQACAgIALm7QUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIALm7QUMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1pcuPIlf7dPkWaP+ZHRxHKfWmr2qHauqpbUqlKPQ6PHQ4HSEIUStyaBLV0+FAz9g3mAHMmv8wESJAAWAS1QT1SlIQtkYn83v7wErX/x+vhAF1G01k8Hr1skQC3UDTqjnvxqP+yNU/O2rr1x+9/t9+Pxv2oMw3R2Xg6DJOXLW5bxr2XrW4vMlT0cFsJEbU5k6StQ6zbETvrhmGPCmxIC6HrWfzdaHwcDqPZJOxGp93zaBgejrth4gY+T5LJd3t7V1dXQTZUMJ729/r9TnA967UQPOZo9rKV7nwH3a3cdMVcc4ox2fvz0aHvvh2PZkk46kYtZKcwj7//3Tf7V/GoN75CV3EvOX/Z0kK10HkU989hThLrFtqzjSYAyCTqJvFlNINbc4duzslw0nLNwpG9/o3fQ4PFdFqoF1/GvWj6soUDpomQTBhmGGWUYtZC42kcjZK0MUkH3cu627+Moyvfr91zQ/IWSsbjQSe0XaJ//ANRTDF6YTfEbyhspPSXsD+Hmd9Qv+F+I3wb7m/nvin3bbhvw+EZL+NZ3BlEL1tn4WAGEMajsymQb3E8S24GkXue9MRy+uQFzGkW/wqNGQY+8ZjDeYxf2F8Jv9xe2FudJMmNmkznNQfNhtRCbD8kvdVE2WKaVBXHBN4vn6bcMKif9zbzJCIHLQzl/rnfwohs0zTXR/THtxtQ8geZ4v5eJir7qXSg2bltm3JPEg1nVl6YQcJYtidIgGxIBVwuEDGwURSBNCAiEBdwSDSSdqsQU3CBI4Y0su0IQ044hIY/XLnOJBLQmT2rQCYRgYE4EgwRJ1McgSQhJ5cgo5RBCyGQgJvs8ITaLphEXMIR04jDM1qRVAQaMrgRjmF4ihhBzN5MFKISSdsf4VbUpbaPDl1SJDGSxHYIUg0S7aUZ2mvE7GxkClc8msyTFYi6w162m4wnC1pAa9BHS7Xn9dOKVvxmfxB2ogEYilNLSYQuw4GVCDfQ2XiUoIyI1J/rT8PJedydnUZJAnfN0JfwMjwMk+j6HbSeZWO7tt3xaHYyHSevx4P5cDRDqDse4MUzjwckt08XTw0HLHeB5y+I3AWZ21el447hCprPIhh/PJ1lzcNe74NtsVQNgOTH0eDm1TQKLybjeHUa+3vO5uxH8+4g7sXh6E/ArHYUiwtamiCxNEGc8+xBxtPe6c0MOBhd/yWajgFHRgNJpKaGCyI4tirnxl/iWASCMMI1xgYTAXZs1g2t7DEdCMy1ZoJLioWGKzcVl4wfObpcECi8jpZz7U+tYOcOPsxejQfLU276r8NJMp865wF049RO6mDUH0SORZy2BcvcveiMr089bzDf1883EzjC/gk6fQc7AtVALTj9dNvxW9fGPtqiFXZtsGuBM2aLe4vrxFDXwm07futaAff6R0unSrJpEpwNE8+cQsOtVGwyZWV53xr6+ShODrODJO5epFMl/obj+bATLTnINngTe6/Eu1urw5B7HcbODTyTWfJn65eIltv/r9z+z+dRErpjCg6LVuDTGeA34BrHzmuMvH8RTUfRIJUbYJn5eD7zaiAnUr2oGw/h0F9IgQ8tU/wnzMmf7UX9aZS2DwfO/fNkcVdxXiQKp11X76bj4YfR5c/AcWsPsL+XPeX+rDuNJ5azUQdszUW05F2Yewimqpe/zwo6oNm1JgkATSzaoALmyfl46jw80FywdS2Hw3DUQyNn3T6MEqAEqMnWUuOGoLuuD4DI0AGorhu3655+PE+yBgf+cdPerN4YRENwE1HihMPJ14IjDlzvlvRo3PkCo62zjGMEP0Tny0ISrF3u+03Hb8LB5NyRPIVzEN5E0xWAXYdH414JNWbo2t+Kbl622m7n1xy/uUe2gr5iG/zZNToCc/nZFvA8cfNexbIcwFd1AHy1G4CEeoXktqlC2hnDcASS4fgL9PzEC/Mkirwe8A8NOxPozmnUFTu1jj4LiL4H9D9Ogd/741E4OARduUaGV5vYOdxMDat6F1iHXyNGbup5aqwq/rvkZZLysoN1zVYk4MVcQKg2cwYtSU2X23kf93qR82C9Lf1l5G+ZeW0dDyeDuBsnmzE/jfr2/BrYBx7sVwWgO5uBnqW9ZVB2ilinHv/DQt32HHuTgv5rvrM7htrBNbBCtFDOIHRFU3URRRPriXwc/TwNRzOb6/BtMl1QT0t1CqR6XUdDvf4KocoV1G50+nh2NosSRxblidLWpWRkd6e5QMYIwZQyTMEBBZdWirdtGxvfWCUmueHgelDp/5CddRsMCU6pfVR37i9xdI6Gcff897dQfKksFgncraH0uk1Reu2F1lsYkXsTxWrAX8fT7qACaIq+RZk/+9eDF+jV3wrI9zYjD95c3F0g23tc6HcCNe5Ho0t4VIhHEbrGabL2Bmf6MztzTRYUJempX0lOdEBup/E1OsjaH2StDiCQbnMccG4kXvyAi3jA0jEOeNb1gchNe53eNkkQn8XdzfSu8pN7nuRArJAuZp8j9Js6OvRNc9xkGTC5Yu7u1lE7inuTEhuUCtCbAoxv68D4tjkwFryGB/R332SsuQ5mVEPtR01R+wskF4Fbm+KAUptEyn4KeZL7tgJVWiH00EcF6N/V4eN3zeHjEqid44PBKaJ8eZqshSF3wuXlEUbK3u8KGJ/VizDOGhthPBR/P0DA8XmchEmFgiLi2//9b28/3xbt53+Ek/HsD7WsaHpLY4RHBhAvSM4JVcIYyjIqawgmOBeScSqxDSXu3D64bHY56m894jl8V3D/v//ZDLnLYy6whNb2fnikefZgAZVEGcO0gr+EG5amwmtTxAsawUVRI1sS5BZiE067ORpkibDBYHz1OTobRNcO4G2FoMRGv00dngoq9GtY6n5TLHW7hLNdyg+rvBQo7pVcAHxCNVGESMMVI/ej42pGchldVqI4COtwoApEOq8Ty50/x3LlsZwIiFBs6UuQ9UjOm0cbyrXvKZY790TvV8VyP9SxQj80x/4AxtRobgjBUmPBeOZHCyUJI8RwZjQlZPes1W2xpgWs39fB+n1zsBYBY5gIrLVhAKxUqa1fg5rfS0w9nY6nazi/rwoC39d3rN43zbEqB7vA2Lb04M7Rfu3Uemn64gfP1BlcKGTe6+IpW6/Q4aKO9bh41FilKcajLUGhSaENFwJzI5XytqRtTCClzcNzaYiQSnrT4m0IczZEciIYERQrhQVhNofPvYEhJgD3RAgOfISFMkp4a0MCJjC23KQMeC8Gc7iH3cbj+JODY9sXZvPNDOKxXXDAvCHRbOFF761y9LliihTpbjhNolkcjtKoIoFj91YLRdeTRXVCFQVc/DooRqQXngjzopRuoy3XZHU7bfkssmUi24Z4TwVaYElBWJnBRNUWYY0N8yLMiAwMg9sURBmGaHkb6S3PRr2tEt+4XjYqboj8LrNRy9dsJdm+p5qP2kjEYkrxSz0ifmkcEX+LNNxkRl8XSHhZy4xeNiaZUr/s4ClZ2ssqS/t3soOthZt2EjyKeSndyP8bc0sV8JlUwGJgP6WUOxhb+77Y+cuSB8wIzrgkXFGubuUrb3zD+XpTRd+gRu500BRxL1T0lcj4A+dHqzI4Aw9+XAD+Q52cwofmZBN4oIGTOc+w1sKRQgSUCyaEwooR+GNLae/+HedXUP5SQPnHOij/2ByUiYB42pbqZ3iyB0T5TVxmihZ5mrWM/+u/ob31Qq6K15RpHztHiVWx4lbWq2TVydO3YJSCFTFYY60xiKSWqQVjCgccHCFjuQVYhoksYiSKBWCtwBJpwgxR6RuEtk3gMA7Gywi7rFQol79xNgysHqUGbBsxRkn4602YJPBIEIEywW0Aqm6lPzdasLdV6dlhDes1bIr1KqnReah44+5zPX+nu3ig9DlD+9tK93zFMA8L7PNTHcP8U4MMc0kt14MZ5vJ8zAeP8U8FjEf18jGjhuRjMu++InBv00ABmxtmqAARoDzj3CeYnCkn6E+eoD8WCDqpR9BJ0wlaTk+ltqEnEU+HoG+rJPSXegT9pSEEbZdQMleRWaIMn6qAbsqeFuvvr2plT68aQs3CIoanlBr1BPrrFfoWQZRSXEKUeZxsFzeVPbupu7ipkrNASIIVllwxjcUWXqq0lW2gUgTRCqJM4n1UHhBQLxy64MJIyuVtiwqq/NQlxTcvVDqs47YeNsdtVYFkdOm0YnaPy23qYVwsajuqg/FRczAmLDCGmNzPwy8NO/TYHhVAPa4D6nGDQMWBJnnOJfcIqi9yPpiuV6wdZ6g6jj0sgDvdwrhMwOot8Js+17uU1zcTLAOlpeF8qahWC5zLGGJzufMDu4xV6m/qmWhQpfY+1pHQj82RUB1gwyg34OlTjTVRd73Y/7ZQF634SR2oT5oDNVgYwbASGCBVNmcnHg7rCoPz0UN9UsD4Ux2MPzUI43KD8yAYl67/Oyms//tUZOj6ZeonTStTB+bmTBNCIEiwmWrjmZva91KEK24/ZKq1YvexKKBsBWCK+yeP+UnVCsB/bgZ9bQXgP59XAO6aRPuUapoKQszqpdJmTXkbCH6LwgziaCC9JEZiwVK+l8AZS2ng6QsFqiQE3ERrYhdziKeb+y5dUfhprb7g0wt0UrWiMKmT0kmePe4Kj5sICFu1/aY3N8JQbbb2uKuqru52vWHiWWJW5cx9rmP1PjfI3oGEC0yVBqVvF/WmjjMNiDV1GivKQNINfbBFcJ8zr7mAcH3v4nPjvItytElAhITQBc5TIwS/jzVwm8AuunKft6vsLYW7rLL38cJCo5iiEKNgzbDQshRvdh/ftyxbdJjGKUugnDb5nF98eOIXH34ukKRbr8y6u2uBdd7WuGLrp1+eZp13ITE14MIzLinL6tOAPaj36BkhvpDFvjpgkgUSHBuqIMy1VskbI3B7tLQfSRBgnzCXjC/fHFARcC4leNDaLm7FaYG15AF11QHCrkmk/A6+flA/MdjbinNWUoO9u+Ce36an8vRzgwfTKFxjoVS5rLDNeDPTjObDaJpTOOP1oFIEyq6GMRgbCQGz0dtzC9klNDuuMmbh1/h/PSwLH5n7N9U4rL15UIFm4KkZDs6asi85n2ogtjHc/ligaacuTTuNoeli3QgFAdG5PKr3sXnAta2VtqaH8q2qkJ4QQY+rCBrVJWjUGIJWCWkFgX/rMpuu9PpQIPFZXRKfNYbENHB+osTcUIEZYbmFnQICC7JYIWOdS19PKCgXkthYjwhNOXuyZN6u+GmOvkUUtdEV2kMbSqB4nSBmedOzM7pDCRQzdgEOmBFsAxYmzBYlUDZYIoITopkxoJyISJfg2GiGsUBLiJUEp0wzdZtgppKpFiSvWPLRrxcH958jmd2Yx/rtYL8oI1hgoyXfgnlYAE0FdIaVxODBcLVkHiMgLsJ2jTHcokT23y3dK/d8rS7zvB4vnT/z0m68xBklgTWd1hZSsc2CIW5fCHADTASeEjNMinIdRO+Djc5dam6bwt6a3z54ZqDdGEgwxQMbD3G7RIOYbT56YEhgNCguwjl44bqCf/h98M9BHc/ooP6LjYOmvdhYfr3G1/HfeTa9Eun8gvCis3Cw/VrvUoSbi7MJRG79X/Y190cA/Woz6PVeIa3f2hjgH5m/awB+S15vGsc/KMNX/P9oefQLGmX1C3J1UxxxY1IcTrXkAcar67Ee7PMAj5a4Wlc+RXpXUP1LXap/eTJU/w0RvUrFHtZx1g7rq9fDpqlUHnCxsgxLPIZlO64D+3F92I+bBvv66jfCHwP2ozqwH9WH/ahpsPvX8fcJdWVdRt5vOFoc0BUtsvpphfqVGpPnlEJFpYbWgdBcLoyXWC/UKBNIV6jh+KTRJivPWV/LUR3uGhccNjMiIDTAOh8KsEfRo3VIcLQrCY4aSgIdcH6v5qtqZXExHC5gu4L8aR20TxuEsAiozDM5uU+0S5d8HRWxNnix/Ot0M5PfktUbx/Dl5LA5iQdaCFZCjVNPiQrcVxeI/WszKdYWiP1rvZaPBPY7OgbspVSGayNT+/i8Pqymgqqgz6BuBmHQqAyCMoUPTqyfTUvsdUAxXXpdhD/ZdEI5/cuIvYWZGtal/7Ax9K9D/rbSgXYfb01/ntLCQaDNaAYXXF/2uB+N+1FnGn7/b1BLBwh4s/QB1xEAAOySAABQSwECFAAUAAgICAC5u0FD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIALm7QUN4s/QB1xEAAOySAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAAbhIAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
+
<ggb_applet width="855" height="472"  version="4.0" ggbBase64="UEsDBBQACAgIAGS/QUMAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAGS/QUMAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1pcttIlv5dfQoMf8yPChPKfamRq0Peyq6S5EWuip7u6OgASYiCzc0gtFX0oaa7b9AHmDPNy0yAGwCaSUkU5JHDNgggkYn83v7wEtj/49VwEFzE6TQZj562cIhaQTzqjnvJqP+0dZ6dtlXrjz/+Yb8fj/txJ42C03E6jLKnLWZaJr2nrW4v1oT3UFtyHrcZFbitIqTaMT3tRlGPcKRxKwiupskPo/FxNIynk6gbn3TP4mF0OO5GmR34LMsmP+ztXV5ehsVQ4Tjt7/X7nfBq2msFcJuj6dNW/uMH6G7poktqmxOE8N6fjg5d9+1kNM2iUTduBWYK58mPf/hu/zIZ9caXwWXSy86ethSXreAsTvpnMCeBVCvYM40mAMgk7mbJRTyFSxd27Zyz4aRlm0Ujc/479ysYzKbTCnrJRdKL06ctFFKFuaBcU00JJQTRVjBOk3iU5Y1xPuhe0d3+RRJfun7NLzskawXZeDzoRKbL4O9/DwgiKHhiNthtCGyEcKeQO4ao2xC3YW7DXRvmLmeuKXNtmGvD4B4vkmnSGcRPW6fRYAoQJqPTFMg3259m14PY3k9+YD59/ATmNE1+h8YUAZ84zOE4Qk/MPwH/mDmxtzxJvDBqlp57DloMqTjffEhyo4nS2TSJLI8JvF89TbFmUDfvTeaJ+QK0MJT9a/+VRqTrprk6otu/2YCC7WSK+3uFqOzn0hFMz0zbnHuyeDg18kJ1wLVhexxwkA0hgct5gDVsJAlAGgLMA8ZhF6tAmK0MqIQTLKCBCkw7TAMrHFzBf0zazkTAoTNzVIJMBhgGYgGnAbYyxQKQpMDKJcgoodCC84DDRWZ4TEwXVARMwB5VAYN7NCIpMTSkcCHsw/AkoDig5mIsAyICYfrDzIi6UObWoUsSCBQIbDoEqQaJdtIM7VVAzWxEDlcympxnSxB1h73iZzaezGgBrUEfzdWe009LWvG7/UHUiQdgKE4MJYPgIhoYibADnY5HWVAQkbhj/TSanCXd6UmcZXDVNPgUXUSHURZfvYLW02Js27Y7Hk3fpePs+XhwPhxNg6A7HqDZPY8HeOE3md017NCFE2zxBF84IRZ+y8pxx3AmOJ/GMP44nRbNo17vjWkxVw2A5NvR4PpZGkefJ+NkeRr7e9bm7Mfn3UHSS6LRb8CsZhSDSzA3QXxughhjxY2M097J9RQ4OLj6c5yOAUdKQoGFIppxzBkyKufanWKIhxxTzBRCGmEOdmzajYzsURVyxJSinAmCuIIz1zWntBs5vpgRKLqK53Ptp0awF3beTJ+NB/NDdvrPo0l2nlrnAXRjaiZ1MOoPYssiVtuCZe5+7oyvThxvUNfXx+sJ7CF3B52+hT0A1UAMOP1823Fb28bc2qwVsm2QbYEKZkt6s/NYE9vCbjtua1sB97pby6eKi2liVAyTTK1CQ61cbAplZXjfGPrzUZIdFjtZ0v2cTxW7C47Ph514zkGmwYvEeSXO3VoeBt/pMGZu4JlMsz8Zv4S37O//Xvj98SzOIrtPwGFREnw6DfwGXGPZeYWR9z/H6Sge5HIDLHM+Pp86NbAgUr24mwxh153IgY8MU/wKc3JHe3E/jfP20cC6f44s9ixaFInSYdvVq3Q8fDO6+Agct3ID+3vFXe5Pu2kyMZwddMDWfI7nvAtzj8BU9RavM4IOaHaNSQJAM4M2qIDz7GycWg8PNBdsbcvhMBr1gpG1bm9GGVAC1GRrrnEj0F1XB0Bk6ABU17X9ae9+fJ4VDQ7c7ea9Gb0xiIfgJgaZFQ4rXzOOOLC9G9IH484nGG2VZSwjuCE6n2aSYOxy3206bhMNJmeW5Dmcg+g6TpcAth0ejXsV1JgGV+7S4Pppq21//L7Ab/aWjaAv2QZ3dIWOwFxutiU839l5L2NZDeAzHwCfbQcgJk4h2W2ukLbGMBqBZFj+Aj0/ccI8iWOnB9xNw48JdGc16pKdWkWfhljdAfpvU+D3/ngUDQ5BV66Q4dk6do7WU8Oo3hnW0deIsTD1RWosK/7b5GWc87KFdcVWZODFfIZQbWoNWpabLvvjddLrxdaDdbb0y8hdMnXaOhlOBkk3ydZjfhL3zfEVsA8c2M9KQHfWAz3Neyug7JSxzj3+3ULddhx7nYP++2Jntwy1hWtghGimnEHoyqbqcxxPjCfydvQxjUZTk+twbQpd4KelOiVSPffRUM+/QqhqBbUdnd6enk7jzJJFOqK0VSUZ6e1rLhxSjJWgDDP3H9taj0H34ICa27LH/pzEZ8Ew6Z79xw2UXC53ZWJ2PRRctykKrj3TcDODcWdiVw/48yTtDmqAJsH3QeG7/uXgSfDsryXke+uRB88t6c6Q7d0v9FuBmvTj0QXcKsSeQXCF8sTsNSp0ZXHkCs8oivNDv+MF0QEZTZOr4KBof1C0OoCguc1QyJgWaPYHBO+A5mMcsKLrA74w7VV6m4RAcpp019O7zifuOZIDsSIym/0CoV/46MsXzXGJRUjFkmm7XafsKOlNKuxNLkAvSjC+9IHxZXNgLHkIO/RtXxSsuQpm7KH246ao/RmSsyCtTVBIiEkYFX9KOZG7tgJ1WiFy0Mcl6F/58PGr5vBxBdTW8UEhxoTND+OVkONWuLw6msjZ+1UJ41O/aOK0sdHErvh7B8HFh3EWZTUKCvPv//0/zn6+LNvP/4wm4+l/eVnR/JLGCI8ICceCMUwk15rQgsqKUMQYh5CBCGQeqd26fbCZ62rUXzrEF/Bdwv1//7EecpuznGEJrc31cEvnxY2FRGCpNVUS/sdM0zzt7U0RJ2gYlUUNb0iQG4hNlHYXaFAkvQaD8eWH+HQQX1mANxWCChv9Mnd4aqjQ97DU/aZY6nYFZ9v0HpKLUiBdkGyeCEmisMRYaCYpvhsd5xnJFXRZiuIgrEOhLBHpzCeWO3uM5apjOR5iLuncl8CrkZwzjyaUa99RLHfmiN6vi+V+8rFCPzXH/gDGRCumMUZCIU5Z4UdzKTDFWDOqFcEY34EF2gxrUsL6tQ/Wr5uDNQ8pRZgjpTQFYIXMbf0K1NsnCNfF1Gk6Tldwfl0XBL72d6xeN82xqga7xNimzODW0X5u1Xpl+uInx9QFXEFEndfFcrZeosNnH+vx+V5jlaYYj7YAhSa40oxzxLSQ0tmSttahEMyUlwiNuZDCmRZnQ6i1IYJhTjEnSErEMeUv20YWjYHBOgT3hHMGfIS41JI7a4NDyhEy3CQ1eC8aMbiG3sTj+M3CsenDsfP1DOKwnXHAeVO8wNJT3Rsl6RcqJ3Kou1GaxdMkGuVhRQb79hFWEF9NZqUIdSSwAeygHJJ+dlQ4L4vpJupyRVg3U5ePMlsls20I+GSoOBIEpJVqhKW3DCukqZNhikWoKVwmIczQWImbiG91OuplnfwmfumopHHpqPlztop030NNSK0lYjmn+MmPiJ8aR8RvkYbr7OjzEgkvvOzoRdPsaE2NwUOyqhd1VvVveAu7ChdtJWQEsUoa4f8/plXikBMsqTJrb6QidAvTSnLvmKJQMhgGnGRBqSqeUWxnWtc+z3y+rlZv4JEpHTRNtme1ehVCvuNsaF2+ZuDAT0rAv/HJILxpUu5AMyQkK7DmlhIsBOGQhIM4cQr/ibt4nvkVjD+VMP7ZB+Ofm4MxZiFRDM/hlLsD+UVSZYhmKZmV5P7zvwZ7qzVbNU8k8z62jgfrosKNbFfFYpKHb78oDxmoPaYJgo0iufkC7ggFeKoKYyQJVrgwXxTxECGBCRxEkrP8UUGbhJhqyRAlWmiuMbaJGme9MAkF0kIhxrWUytpIMF9SqJBwpUATUHqjpM5a0/WyLgs79DBbw6aYrYpSnF1FFbef0fkb2cb3JI+J2G8rqfMVmzwssc8vPjb5lwbZ5IqSrV3Z5OqkyxsH8S8liEd+SZdRQ5IuX4nYwdmXBGnFBZzknIuHW9VVTc9fHD1/LtFz4kfPSdPpWU1OvBE9TbzxUAj6sk5Av/gR9EtDCNquksyFusuyLnyoArouQ1ousr/0ypBeNsUdLS1VeEg5UUehv1wG3wc4JOWFQoXDSbfxUumjl7qNlyoYDUGPI4kEk1QhvoGTKkz9mmaKYyW1lti5qKBJiDYl3BzCTohlxU1LB+rc1DnF1y9HOvTxWg+b47XKUFAy91nNG6jubFGNH8bl0rUjH4yPmoMxpqHWWC/82f0CsEOH7VEJ1GMfUI8bBCoKFV7kXHyHoLpS5oN0tS7tuEDVcuxhCdx0A+MyAas3wy99LGqprmLGSIRSCc3YXFEtlzFXMcT6ouYd+4x16i91TDSoU3tvfST0bXMkVIbaWHQI3zQVFIw+v+01/TfFumzG3/lg/a45WIOJkQgcJKpAUKjQlOwO6xqL89ZB/a6E8XsfjN83CONqi7MTjCuX+b0rLfN7X2Zo/2r0d02rRgfmhqDBsDfnmCier/MjIegWgZQihAuClN7ROr8c9vcO8nd16/z+uR7zlXV+/3xc57dtFu19rmhqCDH1y6VNm5J9aZv6Hy0ZZ0hqIjUjOmd7qdWCMMg8tcYoB8nAFBPYkodbfFi5bPD9SmXB+yfBu7plg5lPRid7dLhrHG7MQo5snlaCHhK2emAzh7uu2Op2FxVmjiWmda7cBx+b96FB1g4EXCIhMBeKK62lzN0MRQUcMW/wVtRk0Ha10u1D4TOXEPb3LT40zreoRhv0ipKIYUE0UsykOHeMdtmT+7BZSW8l3lUlvfeFuApBqVCqGMUMnBLCKwEXdEdLC/MwZQ6UVScfFpcYvnNLDD+USNL1q6/ubltZvWhsbJX1w69MC5n5HgRYBwoBKyG29MTWpolQM6Ww5BrbxabFC8kkDoUAbwhiXCmJyutbwEZJU+KmBGacC7bw4IDKkFBCGYQHhCOWLzqUDAJljSSiiEP4wGtMk88bDvzTgr2N+GYpMdi7Dd75Nh2Vh58ZPEjjaIWFctWyxDbj9UwzOh/G6YK6Ga+GlCIEYRBISwUSwIgUm3ML3iYwO64zZdHX+H81KIvumfs3L3EArxncMyWkqcIjjGr6YAOxtdH22xJRO75E7TSGqLPlIiRUWixkUVFRradAaYDcYK0xJeTh1q2sFdQyTWNfmsaNoWmdoNbR+JsX3HyV15sSkU99iXzaGCLPKwiVUJgWdWU2Q2xfZBkyjiQ4BlSDT4lIkUN9gETdrNzpPPg+IEE7uAz2gjVFT8wnbJlf9OiAblH0RLVEwIaaIKI0olxvUPREQmq+4wP6i2qt4CTPV9yA1yooNdwOFzJCFZU3CWBqmWpG8po1Hn2/yLf/GL1sxzwaIR1KTCBK5kgrwTZgHhpCUw6dISkgzJVMzplHc4iFwLxJCpdIXnwy6U6552uVmGd+vHT2yEvb8RKjBIdME46BdQjfZIUQ46HWDHwkU4kPLpHg1TroRmvT69jozCbjNinl9XzNwSMDbcdAnEoWgiFjDNxnjbXYgIM0DrXSJj3HsJKqhn9ulIWr458DH8/owP9ZxkHTnmXMX0rjKvdvPX9ei/Ti6u+ys3Cw+cLuSoSbi7MO+cKCv+It7fcA+uV60P0eGq1e2hjg75m/PQC/Ia83jeN3yvA13zhbRL+kUZZfDOeb0Egak9CwqmURYLS8Amtn7wO4tzTVqvIp07uG6p98qf7pwVD9GyJ6nYo99HHWDv3V62HTVCoLGV9aeMXvw7Id+8B+7A/7cdNgX13vhtl9wH7kA/uRP+xHTYPdPYK/S6hrazEW/Yaj2Q5Z0iLLb1Pwr86YPKYUaqozlAq5YmJmvPhqcUaVQNriDMsnjTZZi5z1tRzV4bZxwWEzIwJMQqQWQwF6L3rUhwRH25LgqKEkUCFjd2q+6tYSl8PhErZLyJ/4oH3SIIR5SMQik+O7RLtyjddRGWuNZuu9TtYz+Q1ZvXEMX00Ok5PY0dKvCmqcOErU4L68JOxf60mxsiTsX6v1ezjkEkkN9lJIzZQWuX18XBHmqaBq6DPwzSAMGpVBkLr0ionVo/mb6lVIEJl7XfiOXoZ8bzmkKmJvYKaGvvQfNob+PuRvSxUqKeTsjSQPt5xxncksGcvjGrIvMYXfk5LVSxtjKmvSHHdkKmuqSmslr6K2feQre6PGyF6N7p19bJiB16LNpzmLsxtI20N6i+HJ5hb2iy+VvzwUKjMVcqr5/C1PGynVZpK5JuyrfwJXIc8ffdTox+YozqKi+I5ivA2ebX4sYZn6Sk3aGKkpfayuvd2315spKGujD0fNOqdj6kvTaRNpWuVdOgLPzyj1jRJ4OQuwSuDMl8DZI4GbZupqDV6NUP/qY/R+bZ7Ru7/qno8O5F9LkEZf+4xEeano/X5CYvOqjg3fpvygBOdZq+Y7j7/5iMZvzRGNiu887iDpX85d1GUttspXNClTUfNWvZrM5S6ccQd++ftUHV9V1GmOKtr2o9HNVD5rv6bwW4lwXV/CdZtDuJn+uVkt4EOiY14KWFZ5PV869hpDx/Uu9TcojMdLScGKBFHsS8y4McQspQKXJZSykCqCZwlftdGi86YQF+gxmsIJ25fZ78fjftxJox//D1BLBwi/oeF5FRMAABGsAABQSwECFAAUAAgICABkv0FD1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAgIAGS/QUO/oeF5FRMAABGsAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAArBMAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />

Version vom 1. Oktober 2013, 23:00 Uhr

Mathematik

Das Kugelvolumen

Vergleichen Sie das Halbkugelvolumen mit Zylindervolumen und Kegelvolumen (jeweils Höhe gleich Grundflächenradius).