Fibonacci: Unterschied zwischen den Versionen

Aus RMG-Wiki
Wechseln zu: Navigation, Suche
 
Zeile 14: Zeile 14:
 
Da ihr die Fibonacci-Zahlen jetzt hoffentlich verstanden habt, schaut euch mal das Bild an. Könnt ihr ihr einen Zusammenhang zwischen dem Bild und den Fibonacci-Zahlen sehen?
 
Da ihr die Fibonacci-Zahlen jetzt hoffentlich verstanden habt, schaut euch mal das Bild an. Könnt ihr ihr einen Zusammenhang zwischen dem Bild und den Fibonacci-Zahlen sehen?
 
Der Zusammenhang besteht darin, dass die einzelnen Farbquradrate sich immer ergänzen. Das heißt:
 
Der Zusammenhang besteht darin, dass die einzelnen Farbquradrate sich immer ergänzen. Das heißt:
Das weiße und das schwarze kästchen haben zusammen die Seitenlänge des <font color="#ff0000">grünen Quradrats</font>.
+
Das weiße und das schwarze kästchen haben zusammen die Seitenlänge des <font color="#006400">grünen Quradrats</font>.

Aktuelle Version vom 14. Juni 2008, 20:26 Uhr

...bitte auf der Seite Jahr der Mathematik/besondere Zahlen weiterarbeiten!

Die Fibonacci-Folge

Fibonacci-Folge 200.png

Anfangszahl: 0 und 1

Die darauf folgenden Zahlen ergeben sich aus denn davor stehenden Zahlen. Aber nicht alle Zahlen werden zusammen gezählt, sondern nur die letzten zwei Zahlen. So ergibt sich eine endlose Zahlenreihe.

Hier jetzt eine Erklärung dazu, wie man die Zahlen bildet:

Also wird , bei den Startzahlen 0 und 1, einfach die 0 und die 1 addiert und das Ergebnis ist 1. Dann zählt man 1 und 1 zusammen und erhält 2. Jetzt muß man 1 und 2 addieren. Diesmal kommt 3 raus. Wenn man jetzt weitermacht,komm als nächstes 5,8,13,21,34,55,89,142 heraus.


Da ihr die Fibonacci-Zahlen jetzt hoffentlich verstanden habt, schaut euch mal das Bild an. Könnt ihr ihr einen Zusammenhang zwischen dem Bild und den Fibonacci-Zahlen sehen? Der Zusammenhang besteht darin, dass die einzelnen Farbquradrate sich immer ergänzen. Das heißt: Das weiße und das schwarze kästchen haben zusammen die Seitenlänge des grünen Quradrats.