Facharbeit Lernpfad Terme/Terme und Variablen: Unterschied zwischen den Versionen
K (→Termbegriff) |
K (→Termbegriff) |
||
Zeile 18: | Zeile 18: | ||
# Länge des Zuges mit 9 Wagons:<br />15,5 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m = 197,75 m | # Länge des Zuges mit 9 Wagons:<br />15,5 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m + 20,25 m = 197,75 m | ||
− | * In den Rechnungen oben hat sich die Anzahl der Wagons verändert. Um möglichst schnell und einfach viele verschiedene Wagonsanzahlen auszurechnen, ist es sinnvoll sich zu überlegen, welche Zahlen sich verändern und welche nicht.<br />Die Lokomotive bleibt immer gleich, sie ist "fest". Die Anzahl der Wagons verändert sich, sie "variiert". Also kannst du diese Rechnung auch so schreiben: <math>15,5m + \Box*(20,25m)</math><br />und für <math> \Box</math> die verschiedenen | + | * In den Rechnungen oben hat sich die Anzahl der Wagons verändert. Um möglichst schnell und einfach viele verschiedene Wagonsanzahlen auszurechnen, ist es sinnvoll sich zu überlegen, welche Zahlen sich verändern und welche nicht.<br />Die Lokomotive bleibt immer gleich, sie ist "fest". Die Anzahl der Wagons verändert sich, sie "variiert". Also kannst du diese Rechnung auch so schreiben: <math>15,5m + \Box*(20,25m)</math><br />und für <math> \Box</math> die verschiedenen Anzahlen für die Wagons einsetzen. |
</popup> </div> | </popup> </div> | ||
Version vom 25. August 2010, 08:44 Uhr
Inhaltsverzeichnis |
Terme und Variablen
Termbegriff
Eine Klasse macht am Wandertag einen Ausflug in den Zoo mit dem Zug. Der Zug hat folgende Maße:
Lokomotive: 15,5 m ; Wagon jeweils 20,25 m.
- Wie lang ist der Zug (1 Lokomotive, 2 Wagons)?
- Wie lang ist der Zug mit 3, 5, 9, Wagons?
- Wie kannst du die verschiedenen Längen des Zuges am einfachsten berechnen?
Den oben verwendeten Rechenausdruck nennt man Term. Ein Term kann neben Zahlen auch Größen enthalten, die veränderbar sind. Diese Größen nennt man Variable, zum Beispiel oder Buchstaben wie a, b, c, n oder x, y, z. Sie halten den Platz für verschiedene Einsetzungen frei.
Dieser Term beschreibt alle Vielfachen von 4, wenn man für n der Reihe nach alle natürlichen Zahlen einsetzt.
n | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
T(n) | T(1)=4•1=4 | T(2)=4•2=8 | T(3) | T(4) | T(5) | T(6) |
Vervollständige die Tabelle in deinem Heft.
Dieser Term beschreibt alle Quadratzahlen, wenn man für x der Reihe nach alle natürlichen Zahlen einsetzt. Fertige wie in Beispiel 1 eine Tabelle in deinem Heft an.
x | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
T(x) |
Rechenregeln
Die Schreibweise T(n) bzw. T(x) beschreibt, dass n bzw. x die Variable ist. Die Zahlen, die für die Variable in einen Term eingesetzt werden dürfen und zu einer sinnvollen Aussage führen, nennt man Definitionsmenge . Setzt du für die Variable eine Zahl aus der Definitionsmenge ein, so errechnest du den zugehörigen Termwert. In der 6. Klasse hast du bereits gelernt, dass es verschiedene Termarten gibt. (Falls du dich nicht mehr erinnern kannst, klicke hier)
Vereinbarung:
1. Malpunkte zwischen einer Zahl (oder Variablen) und einer Variablen oder einer Klammer können weggelassen werden
- Beispiel:
- 3•x=3x
- a•b=ab
- 5•(a2+b)=5(a2+b)
2. Vorrangregel: Klammern zuerst, Potenz vor Punkt, Punkt vor Strich!
3. Achtung : 3•7+2•a=3•7+2a
- Den Malpunkt zwischen zwei Zahlen darfst du nicht weglassen!
Übungsaufgaben
T1(x)=10•x-12 | T2(x)=10•(x-12) | T3(x)=10•x+(-12) | T4(x)=(x+x):3 | T5(x)=(x+3)•x | T6(x)=x+(3+x) |
Differenz | Produkt | Summe | Quotient | Produkt | Summe |
10x-12 | 10x-120 | 10x-12 | 2x:3 bzw. | x2+3x | 3+2x |
a) Wer hat das richtige Ergebnis errechnet?
b) Welchen Fehler haben die anderen beiden gemacht?
c) Ändere bei denen, die falsch gerechnet haben, den Term T(x) jeweils durch Klammersetzen so um, dass sich die angegebenen Termwerte beim Einsetzen von x=5 ergeben.