Grenzwerte im Unendlichen: Unterschied zwischen den Versionen
(→Konvergente Funktionen) |
|||
(2 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 70: | Zeile 70: | ||
|- | |- | ||
| valign="top" | | | valign="top" | | ||
− | <br /> <br /> Bei der Funktion f(x)=2x<sup>3</sup>+x-1 erkennt man, dass die Funktionswerte für beliebig große x-Werte beliebig groß werden und der Graph ins Unendliche steigt bzw. | + | <br /> <br /> Bei der Funktion f(x)=2x<sup>3</sup>+x-1 erkennt man, dass die Funktionswerte für beliebig große x-Werte beliebig groß werden und der Graph ins Unendliche steigt bzw. für immer kleiner werdende x-Werte gegen -<math>\infty</math> geht. Daher besitzt die Funktion keinen exakten Grenzwert. <br /> |
'''Es gilt:''' <br /> | '''Es gilt:''' <br /> | ||
Zeile 101: | Zeile 101: | ||
|- | |- | ||
| valign="top" | | | valign="top" | | ||
− | <br /> <br /> <br /> <br /> Die Funktion f(x)= | + | <br /> <br /> <br /> <br /> Die Funktion f(x)=x<math>\cdot</math>cosx besitzt ebenfalls keinen exakten Grenzwert. Zwar werden die Funktionswerte betragsmäßig beliebig groß, allerdings schwanken sie dabei gleichzeitig. In diesem Fall ist auch die Schreibweise <math>\lim_{x\to\infty} f(x)=\infty</math> bzw. <math>\lim_{x\to-\infty} f(x)=-\infty</math> '''nicht''' erlaubt. |
<br /> <br /> <br /> <br /> | <br /> <br /> <br /> <br /> | ||
Zeile 129: | Zeile 129: | ||
== <span style="color: blue">Beispielaufgaben</span> == | == <span style="color: blue">Beispielaufgaben</span> == | ||
− | ''' <span style="color: blue">Aufgabe 1:</span>''' <br /> | + | <div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 1:</span>''' <br /> |
Untersuche die Funktionen auf Grenzwerte. <br /> | Untersuche die Funktionen auf Grenzwerte. <br /> | ||
:a) f(x)=x<sup>2</sup> <br /> | :a) f(x)=x<sup>2</sup> <br /> | ||
Zeile 140: | Zeile 140: | ||
a) <br /> | a) <br /> | ||
f(x)=x<sup>2</sup> | f(x)=x<sup>2</sup> | ||
− | ::<math>\lim_{x\to \pm\infty} f(x)= \pm\infty</math> da die Funktionswerte im positiven Bereich für wachsende und im negativen Bereich für immer kleiner werdende x-Werte | + | ::<math>\lim_{x\to \pm\infty} f(x)= \pm\infty</math> da die Funktionswerte im positiven Bereich für wachsende und im negativen Bereich für immer kleiner werdende x-Werte gegen + bzw. - unendlich gehen <br /> |
b) <br /> | b) <br /> | ||
f(x)=2<sup>x</sup> | f(x)=2<sup>x</sup> | ||
Zeile 151: | Zeile 151: | ||
f(x)=<math>5-{1 \over x}</math> | f(x)=<math>5-{1 \over x}</math> | ||
::<math>\lim_{x\to \pm\infty} f(x)= 5</math> da <math>\frac 1x</math> für größer werdende x-Werte gegen 0 geht | ::<math>\lim_{x\to \pm\infty} f(x)= 5</math> da <math>\frac 1x</math> für größer werdende x-Werte gegen 0 geht | ||
− | </popup> <br /> <br /> | + | </popup> </div> <br /> <br /> |
− | ''' <span style="color: blue">Aufgabe 2:</span>''' <br /> | + | <div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 2:</span>''' <br /> |
− | Ab welchem Funktionswert unterschreitet die Funktion f(x)=<math>{4x+1 \over 2x-3}</math> die Abweichung von 0, 1 vom Grenzwert (für x→ | + | Ab welchem Funktionswert unterschreitet die Funktion f(x)=<math>{4x+1 \over 2x-3}</math> die Abweichung von 0, 1 vom Grenzwert (für x→<math>\infty</math>)? |
<br /> <br /> | <br /> <br /> | ||
<popup name="Lösung"> | <popup name="Lösung"> | ||
f(x)=<math>{4x+1 \over 2x-3}</math> | f(x)=<math>{4x+1 \over 2x-3}</math> | ||
− | ::<math>\lim_{x\to \infty} f(x)=</math><math>\lim_{x\to \infty}{x(4+1 | + | ::<math>\lim_{x\to \infty} f(x)=</math><math>\lim_{x\to \infty}{x(4+ \frac {1} {x}) \over x(2- \frac {3} {x})}=\lim_{x\to \infty}{4+ \frac {1} {x} \over 2- \frac {3} {x}}={4 \over 2}=2</math> <br /> |
Der Grenzwert der Funktion liegt also bei y=2, da sich der Graph von oben diesem Wert nähert, bedeutet das für den Funktionswert bei einer Abweichung von 0,1 <br /> <br /> | Der Grenzwert der Funktion liegt also bei y=2, da sich der Graph von oben diesem Wert nähert, bedeutet das für den Funktionswert bei einer Abweichung von 0,1 <br /> <br /> | ||
f(x)=2,1 (Grenzwert + Abweichung) <br /> <br /> | f(x)=2,1 (Grenzwert + Abweichung) <br /> <br /> | ||
Zeile 164: | Zeile 164: | ||
:→x=36,5 <br /> | :→x=36,5 <br /> | ||
::→ für x>36,5 ist die Abweichung vom Grenzwert kleiner als 0,1 <br /> | ::→ für x>36,5 ist die Abweichung vom Grenzwert kleiner als 0,1 <br /> | ||
− | </popup> <br /> <br /> | + | </popup> </div> <br /> <br /> |
− | ''' <span style="color: blue">Aufgabe 3:</span>''' <br /> | + | <div style="margin:0px; margin-right:90px; border: solid thin green; padding: 1em 1em 1em 1em; background-color:white; width:90%; align:center; ">''' <span style="color: blue">Aufgabe 3:</span>''' <br /> |
Kreuze die richtigen Antworten an. Es können mehrere Antwortmöglichkeiten richtig sein. <br /> | Kreuze die richtigen Antworten an. Es können mehrere Antwortmöglichkeiten richtig sein. <br /> | ||
<quiz display="simple"> | <quiz display="simple"> | ||
Zeile 196: | Zeile 196: | ||
+ existiert nicht | + existiert nicht | ||
− | </quiz> | + | </quiz> </div> |
|} | |} | ||
Aktuelle Version vom 27. Januar 2010, 20:17 Uhr
Grenzwerte im Unendlichen
Konvergente Funktionen
Divergente FunktionenBei divergenten Funktionen, also Funktionen die für x→ keinen Grenzwert besitzen, unterscheidet man drei verschiedene Möglichkeiten.
Beispielaufgaben Aufgabe 1: Untersuche die Funktionen auf Grenzwerte.
Aufgabe 2: Ab welchem Funktionswert unterschreitet die Funktion f(x)= die Abweichung von 0, 1 vom Grenzwert (für x→)?
Aufgabe 3:
Kreuze die richtigen Antworten an. Es können mehrere Antwortmöglichkeiten richtig sein. |