Lösung für die Aufgaben:

1. Gib die Elektronenbesetzung für B (Bor) an!

Bor besitzt 5 Elektronen: Zwei auf der innersten Schale, drei auf der äußeren. Die innerste Schale hat die Hauptquantenzahl n=1, daraus folgt, dass es nur eine Orbitalform gibt: 1 muss nämlich kleiner gleich 0 und kleiner gleich n-1 sein $(0 \le l \le n-1)$; l ist also 0 und damit ein s-Orbital. Da s-Orbitale nicht weiter aufspalten (m=0) ist es das einzige Orbital der K-Schale. In einem Orbital haben zwei Elektronen mit unterschiedlichem Spin Platz \rightarrow 1s²

Die drei Elektronen auf der äußeren Schale verteilen sich wie folgt. Bei n = 2 existieren zwei Unterschalen (Orbitale), nämlich l = 0 (s-Orbital) und l = 1 (p-Orbital) Im s-Orbital finden 2 Elektronen Platz $\rightarrow 2s^2$.

Das dritte Elektron muss ein p-Orbital besetzen. Davon gibt es drei: $(-l \le m \le +l)$, bei l=1 existieren also p-Orbitale mit m=-1,0 und +1. Welches davon mit einem Elektron besetzt wird, ist zunächst egal, man schreibt einfach $2p^1$.

Die Lösung lautet 1s² 2s² 2p¹

2. Gib die Elektronenbesetzung für Ar (Argon) an!

$$1s^2 2s^2 2p^6 3s^2 3p^6$$

3. Wie viele Elektronen haben insgesamt in der Schale mit der Hauptquantenzahl n = 3 Platz?

Hauptquantenzahl	Nebenquantenzahl	Magnetquantenzahl	Spinquantenzahl	Elektronen gesamt
n	l	m	S	
	$(0 \le l \ge n - 1)$	$(-l \le m \ge +l)$	$(nur + \frac{1}{2}o \frac{1}{2})$	
n = 3	l = 0 (s-Orbital)	$\mathbf{m} = 0$	+ 1/2	
			- 1/2	2 im s-Orbital
	l = 1 (p-Orbitale)	m = -1	$+ \frac{1}{2}$	
			- 1/2	
		$\mathbf{m} = 0$	$+ \frac{1}{2}$	
			- 1/2	
		m = +1	$+ \frac{1}{2}$	
			- 1/2	6 in den p-Orbitalen
	1 = 2 (d-Orbitale)	m = -2	$+ \frac{1}{2}$	
			- 1/2	
		m = -1	$+ \frac{1}{2}$	
			- 1/2	
		$\mathbf{m} = 0$	$+ \frac{1}{2}$	
			- 1/2	
		m = +1	$+ \frac{1}{2}$	
			- 1/2	
		m = +2	$+ \frac{1}{2}$	
			- 1/2	10 in den d-Orbitalen
				Zusammen: 18 e ⁻

4. Wie viele p-Orbitale besitzt die O-Schale (n = 6)?

Für die Anzahl der p-Orbitale ist n völlig unerheblich! p-Orbitale haben immer die Nebenquantenzahl l=1 und erhält man für $m=-1,\,0$ und +1.

Antwort: Es gibt immer drei p-Orbitale!

5. Wie viele verschiedene Orbitaltypen (s, p, d, f_n) gibt es bei n = 3?

Mit
$$n = 3$$
 folgt: $l = 0$, 1, 2. Es gibt also drei Orbital-Typen: $l = 0$ ist ein s-Orbital, $l = 1$ steht für p-Orbitale, $l = 2$ steht für d-Orbitale.

6. Wie viele Magnetquantenzahlen gibt es für das f-Orbital-Niveau (l=3)?

Es gilt:
$$(-l \le m \le +l)$$
 Daraus folgt: $m = -3, -2, -1, 0, +1, +2, +3$

Antwort: Es existieren 7 Magnetquantenzahlen für das f-Orbital-Niveau

7. Folgende Elektronenbesetzung ist gegeben: $1s^2 2s^2 2p^6 3s^2 3p^5$.

a) Welches Element wird hier beschrieben?

17 Elektronen \rightarrow Chlor.

b) Wie viele Elektronen befinden sich auf der ersten Schale?

$$1s^2 \rightarrow 2$$
 Elektronen

c) Wie viele Elektronen befinden sich auf der zweiten Schale?

$$2s^2 2p^6 \rightarrow 8$$
 Elektronen

d) Wie viele Elektronen befinden sich auf der dritten Schale?

$$3s^2 3p^5 \rightarrow 7$$
 Elektronen

e) Wie viele Elektronen befinden sich in s-Orbitalen?

$$1s^2$$
, $2s^2$, $3s^2 \rightarrow 6$ Elektronen

f) Wie viele Elektronen befinden sich in p-Orbitalen?

$$2p^6$$
, $3p^5 \rightarrow 11$ Elektronen