6d) Funktionsuntersuchung der Funktion: $f(x) = \frac{1}{2}(x^2 - 1)^2$

$$f(x) = \frac{1}{2}(x^2 - 1)^2$$

1.) Bestimmung des Definitionsbereich:

$$\rightarrow$$
 $\mathbb{D} = \mathbb{R}$

- 2.) Prüfen auf Symmetrie:
 - → Punktsymmetrie: f(-x) = -f(x) $\frac{1}{2}((x)^2-1)^2 \neq -\frac{1}{2}(x^2-1)^2 \Rightarrow$ keine Punktsymmetrie vorhanden
 - \rightarrow Achsensymmetrie: f(-x) = f(x) $\frac{1}{2}((-x)^2-1)^2 = \frac{1}{2}(x^2-1)^2$ \rightarrow Achsensymmetrie vorhanden
- 3.) Bestimmung aller Schnittpunkte mit den Koordinatenachsen (insbesondere also Nullstellen):
 - \rightarrow Nullstellen: 0 = f(x)

$$0 = \frac{1}{2}(x^2 - 1)^2$$

$$x_1 = 1;$$

$$x_2 = -1$$

→ Schnittpunkte mit der y-Achse: $f(0) = \frac{1}{2}(x^2 - 1)^2$

$$f(0) = \frac{1}{2}(0^2 - 1)^2 = \frac{1}{2}(-1)^2 = \frac{1}{2} \rightarrow \text{Schnittpunkt mit der y-Achse bei } (0|0,5)$$

- 4.) Verhalten an den Rändern des Definitionsbereichs (Asymptoten):
 - Grenzwert:

$$\lim_{x \to +\infty} \frac{1}{2} (x^2 - 1)^2 = +\infty$$

$$\lim_{x \to -\infty} \frac{1}{2} (x^2 - 1)^2 = +\infty$$

- 5.) Berechnung der Ableitung f'(x) und Bestimmung der Monotonie:
 - Ableitung: $f'(x) = \left(\frac{(x^2-1)^2}{2}\right)$ $= \frac{(x^2 - 1)(x^2 - 1)}{2}$ $= \frac{(x^4 - 2x^2 + 1)}{2}$ $= \frac{1}{2}x^4 - x^2 + \frac{1}{2}$ $= \frac{1}{2}x^3 - 2x$
 - Nullstelle der Ableitung: $0 = 2x^3 2x = 2 \times (x^2 1) = 2 \times (x 1)(x + 1)$

$$x_3 = 1; \quad x_4 = -1; \quad x_5 = 0$$

→ Vorzeichentabelle:

	<i>x</i> < -1	$\begin{vmatrix} x \\ = -1 \end{vmatrix}$	-1 < x < 0	x = 0	0 < x < 1	x=1	x>1
f'(x)	-	0	+	0	-	0	+
f(x)	smf	Min. (0[-1)	sms 7	Max. (0 0)	smf	Min (0/1)	sms

