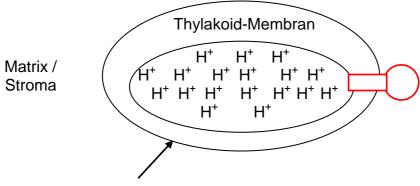
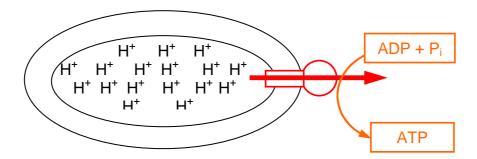

5.2.5.1 Die lichtabhängige Reaktion

Der Stoff **NADPH** + **H**⁺ enthält energiereiche (d.h. leicht abspaltbare) Elektronen. **NADPH** + **H**⁺ ist daher ein sehr gutes Reduktionsmittel.

Bei der Spaltung des Wasser werden aber nur energiearme Elektronen frei.


In zwei Schritten werden aus diesen mit Hilfe von Licht energiereiche Elektronen:

In diesem Schema fehlen die in der Membran verankerten Moleküle der e[−]Transportketten (Plastochinon, Cytochrom-komplex, Plastocyanin)! → s. AB


- ①: Lichtabsorption an FS II und Übertragung von e an Transportkette
- 2: Fotolyse von Wasser liefert dem P680 die nun fehlenden e
- ③: e⁻-Transportkette: Plastochinon → Cytochromkomplex → Plastocyanin
- 4: Lichtabsorption an FS I und Übertragung von e an Ferredoxin (F)
- (bei Überangebot von NADPH + H⁺)
- (6): NADP⁺ + 2 e⁻ + 2 H⁺ → NADPH + H⁺

Bei diesen Vorgängen wird ein H⁺-Konzentrationsgefälle (Protonen-Gradient) zwischen Stroma und Thylakoid-Innenraum erzeugt (Details s. AB):

Thylakoid-Innenraum

Das Bestreben dieses Ungleichgewicht auszugleichen kann vom Enzym ATPase zur Erzeugung von ATP genutzt werden.

Die Umwandlung: Lichtenergie → chemische Energie ist mit der lichtabhängigen Reaktion abgeschlossen. Im Folgenden finden nur noch Umbauprozesse statt: